Analytical Data Mining for Stream Data Analysis

نویسنده

  • Ronnie Alves
چکیده

The main idea behind this research relies on analytical data mining functions to handle data streams. Given the characteristics of the data stream, the new methods and techniques for stream data analysis must conduct advanced analysis and data mining over fast and large data streams to capture the trends, patterns and exceptions. Besides, much of such data resides at rather low level of abstraction, whereas most analysts are interested in dynamic changes at relatively high levels of abstractions. Furthermore, recently studies are heading to combine ideas of cube-based algorithms with data mining functions to reveal exceptional and trend patterns over data streams. Thus, this work intends to provide new methods for effective and efficient analytical data mining over data streams.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An analytical framework for data stream mining techniques based on challenges and requirements

A growing number of applications that generate massive streams of data need intelligent data processing and online analysis. Real-time surveillance systems, telecommunication systems, sensor networks and other dynamic environments are such examples. The imminent need for turning such data into useful information and knowledge augments the development of systems, algorithms and frameworks that a...

متن کامل

Separation of Geochemical Anomalies Using Factor Analysis and Concentration-Number (C-N) Fractal Modeling Based on Stream Sediments Data in Esfordi 1:100000 Sheet, Central Iran

The aim of this study is separation of Fe2O3, TiO2 and V2O5 anomalies in Esfordi 1:100,000 sheet which is located in Bafq district, Central Iran. The analyzed elements of stream sediment samples taken in the area can be classified into 5 groups (factors) by factor analysis. The Concentration–Number (C-N) fractal model was used for delineation of the Fe2O3, TiO2 and V2O5 thresholds. According to...

متن کامل

Application of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran

Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, loc...

متن کامل

Using stream sediment data to determine geochemical anomalies by statistical analysis and fractal modeling in Tafrash Region, Central Iran

Iranian Cenozoic magmatic belt, known as Urumieh-Dokhtar, is recognized as an important polymetallic mineralization which hosts porphyry, epithermal, and polymetallic skarn deposits. In this regard, multivariate analyses are generally used to extract significant anomalous geochemical signature of the mineral deposits. In this study, stepwise factor analysis, cluster analysis, and concentration–...

متن کامل

Multi-Dimensional Analysis of Data Streams Using Stream Cubes

Large volumes of dynamic stream data pose great challenges to its analysis. Besides its dynamic and transient behavior, stream data has another important characteristic: multi-dimensionality. Much of stream data resides at a multidimensional space and at rather low level of abstraction, whereas most analysts are interested in relatively high-level dynamic changes in some combination of dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006